320 research outputs found

    GM1 Ganglioside role in the interaction of Alpha-synuclein with lipid membranes: Morphology and structure

    Get PDF
    Alpha-Synuclein (AS) is the protein playing the major role in Parkinson's disease (PD), a neurological disorder characterized by the degeneration of dopaminergic neurons and the accumulation of AS into amyloid plaques. The aggregation of AS into intermediate aggregates, called oligomers, and their pathological relation with biological membranes are considered key steps in the development and progression of the disease. Here we propose a multi-technique approach to study the effects of AS in its monomeric and oligomeric forms on artificial lipid membranes containing GM1 ganglioside. GM1 is a component of functional membrane micro-domains, called lipid rafts, and has been demonstrated to bind AS in neurons. With the aim to understand the relation between gangliosides and AS, here we exploit the complementarity of microscopy (Atomic Force Microscopy) and neutron scattering (Small Angle Neutron Scattering and Neutron Reflectometry) techniques to analyze the structural changes of two different membranes (Phosphatidylcholine and Phosphatidylcholine/GM1) upon binding with AS. We observe the monomer- and oligomer-interactions are both limited to the external membrane leaflet and that the presence of ganglioside leads to a stronger interaction of the membranes and AS in its monomeric and oligomeric forms with a stronger aggressiveness in the latter. These results support the hypothesis of the critical role of lipid rafts not only in the biofunctioning of the protein, but even in the development and the progression of the Parkinson's disease

    Detecting disease rare alleles using single SNPs in families and haplotyping in unrelated subjects from the Genetic Analysis Workshop 17 data

    Get PDF
    We present an evaluation of discovery power for two association tests that work well with common alleles but are applied to the Genetic Analysis Workshop 17 simulations with rare causative single-nucleotide polymorphisms (SNPs) (minor allele frequency [MAF] < 1%). The methods used were genome-wide single-SNP association tests based on a linear mixed-effects model for discovery and applied to the familial sample and sliding windows haplotype association tests for replication, implemented within causative genes in the unrelated individuals sample. Both methods are evaluated with respect to the simulated trait Q2. The linear mixed-effects model and haplotype association tests failed to detect the rare alleles of the simulated associations. In contrast, the linear mixed-effects model and haplotype association tests detected effects for the most important simulated SNPs with MAF > 1%. We conclude that these findings reflect inadequate statistical power (the result of small simulated samples) for the complex genetic model that underlies these data

    Two-stage analyses of sequence variants in association with quantitative traits

    Get PDF
    We propose a two-stage design for the analysis of sequence variants in which a proportion of genes that show some evidence of association are identified initially and then followed up in an independent data set. We compare two different approaches. In both approaches the same summary measure (total number of minor alleles) is used for each gene in the initial analysis. In the first (simple) approach the same summary measure is used in the analysis of the independent data set. In the second (alternative) approach a more specific hypothesis is formed for the second stage; the summary measure used is the count of minor alleles in only those variants that in the initial data showed the same direction of association as was seen overall. We applied the methods to the simulated quantitative traits of Genetic Analysis Workshop 17, blind to the simulation model, and then evaluated their performance once the underlying model was known. Performance was similar for most genes, but the simple strategy considerably out-performed the alternative strategy for one gene, where most of the effect was due to very rare variants; this suggests that the alternative approach would not be advisable when the effect is seen in very rare variants. Further simulations are needed to investigate the potential superior power of the alternative method when some variants within a gene have opposing effects. Overall, the power to detect associations was low; this was also true when using a more powerful joint analysis that combined the two stages of the study

    Parameter Estimation and Quantitative Parametric Linkage Analysis with GENEHUNTER-QMOD

    Get PDF
    Objective: We present a parametric method for linkage analysis of quantitative phenotypes. The method provides a test for linkage as well as an estimate of different phenotype parameters. We have implemented our new method in the program GENEHUNTER-QMOD and evaluated its properties by performing simulations. Methods: The phenotype is modeled as a normally distributed variable, with a separate distribution for each genotype. Parameter estimates are obtained by maximizing the LOD score over the normal distribution parameters with a gradient-based optimization called PGRAD method. Results: The PGRAD method has lower power to detect linkage than the variance components analysis (VCA) in case of a normal distribution and small pedigrees. However, it outperforms the VCA and Haseman-Elston regression for extended pedigrees, nonrandomly ascertained data and non-normally distributed phenotypes. Here, the higher power even goes along with conservativeness, while the VCA has an inflated type I error. Parameter estimation tends to underestimate residual variances but performs better for expectation values of the phenotype distributions. Conclusion: With GENEHUNTER-QMOD, a powerful new tool is provided to explicitly model quantitative phenotypes in the context of linkage analysis. It is freely available at http://www.helmholtz-muenchen.de/genepi/downloads. Copyright (C) 2012 S. Karger AG, Base

    Exome sequences of multiplex, multigenerational families reveal schizophrenia risk loci with potential implications for neurocognitive performance

    Get PDF
    Schizophrenia is a serious mental illness, involving disruptions in thought and behavior, with a worldwide prevalence of about one percent. Although highly heritable, much of the genetic liability of schizophrenia is yet to be explained. We searched for susceptibility loci in multiplex, multigenerational families affected by schizophrenia, targeting protein-altering variation with in silico predicted functional effects. Exome sequencing was performed on 136 samples from eight European-American families, including 23 individuals diagnosed with schizophrenia or schizoaffective disorder. In total, 11,878 non-synonymous variants from 6,396 genes were tested for their association with schizophrenia spectrum disorders. Pathway enrichment analyses were conducted on gene-based test results, protein-protein interaction (PPI) networks, and epistatic effects. Using a significance threshold of FDR\u3c0.1, association was detected for rs10941112 (P=2.1×10−5; q-value=0.073) in AMACR, a gene involved in fatty acid metabolism and previously implicated in schizophrenia, with significant cis effects on gene expression (P=5.5×10−4), including brain tissue data from the Genotype-Tissue Expression project (minimum P=6.0×10−5). A second SNP, rs10378 located in TMEM176A, also shows risk effects in the exome data (P=2.8×10−5; q-value=0.073). Protein-protein interactions among our top gene-based association results (P\u3c0.05; n=359 genes) reveal significant enrichment of genes involved in NCAM-mediated neurite outgrowth (P=3.0×10−5), while exome-wide SNP-SNP interaction effects for rs10941112 and rs10378 indicate a potential role for kinase-mediated signaling involved in memory and learning. In conclusion, these association results implicate AMACR and TMEM176A in schizophrenia risk, whose effects may be modulated by genes involved in synaptic plasticity and neurocognitive performance

    Linkage analysis of longitudinal data and design consideration

    Get PDF
    BACKGROUND: Statistical methods have been proposed recently to analyze longitudinal data in genetic studies. So far, little attention has been paid to examine the relationship among key factors in genetic longitudinal studies including power, the number of families or sibships, and the number of repeated measures per individual subjects. RESULTS: We proposed a variance component model that extends classic variance component models for a single quantitative trait to mapping longitudinal traits. Our model includes covariate effects and allows genetic effects to vary over time. Using our proposed model, we examined the power, pedigree structures, and sample size through simulation experiments. CONCLUSION: Our simulation results provide useful insights into the study design for genetic, longitudinal studies. For example, collecting a small number of large sibships is much more powerful than collecting a large number of small sibships or increasing the number of repeated measures, when the total number of measurements is comparable

    Identification of functional rare variants in genome-wide association studies using stability selection based on random collapsing

    Get PDF
    Genome-wide association studies are a powerful approach used to identify common variants for complex disease. However, the traditional genome-wide association methods may not be optimal when they are applied to rare variants because of the rare variants’ low frequencies and weak signals. To alleviate the difficulty, investigators have proposed many methods that collapse rare variants. In this paper, we propose a novel ranking method, which we call stability selection based on random collapsing, to rank the candidate rare variants. We use the simulated mini-exome data sets of unrelated individuals from Genetic Analysis Workshop 17 for the analysis. The numerical results suggest that the selection based on a random collapsing method is promising for identifying functional rare variants in genome-wide association studies. Further research to examine the error control property of the proposed method is underway

    Detection of associations with rare and common SNPs for quantitative traits: a nonparametric Bayes-based approach

    Get PDF
    We propose a nonparametric Bayes-based clustering algorithm to detect associations with rare and common single-nucleotide polymorphisms (SNPs) for quantitative traits. Unlike current methods, our approach identifies associations with rare genetic variants at the variant level, not the gene level. In this method, we use a Dirichlet process prior for the distribution of SNP-specific regression coefficients, conduct hierarchical clustering with a distance measure derived from posterior pairwise probabilities of two SNPs having the same regression coefficient, and explore data-driven approaches to select the number of clusters. SNPs falling inside the largest cluster have relatively low or close to zero estimates of regression coefficients and are considered not associated with the trait. SNPs falling outside the largest cluster have relatively high estimates of regression coefficients and are considered potential risk variants. Using the data from the Genetic Analysis Workshop 17, we successfully detected associations with both rare and common SNPs for a quantitative trait. We conclude that our method provides a novel and broadly applicable strategy for obtaining association results with a reasonably low proportion of false discovery and that it can be routinely used in resequencing studies

    Use of principal components to aggregate rare variants in case-control and family-based association studies in the presence of multiple covariates

    Get PDF
    Rare variants may help to explain some of the missing heritability of complex diseases. Technological advances in next-generation sequencing give us the opportunity to test this hypothesis. We propose two new methods (one for case-control studies and one for family-based studies) that combine aggregated rare variants and common variants located within a region through principal components analysis and allow for covariate adjustment. We analyzed 200 replicates consisting of 209 case subjects and 488 control subjects and compared the results to weight-based and step-up aggregation methods. The principal components and collapsing method showed an association between the gene FLT1 and the quantitative trait Q1 (P<10−30) in a fraction of the computation time of the other methods. The proposed family-based test has inconclusive results. The two methods provide a fast way to analyze simultaneously rare and common variants at the gene level while adjusting for covariates. However, further evaluation of the statistical efficiency of this approach is warranted
    • …
    corecore